手机浏览器扫描二维码访问
同学们齐声回答:“记得!”
戴浩文先生笑着说:“那好,我来考考大家。假设有两个三维向量a=(1,2,3)和b=(4,5,6),当p=3时,计算文可夫斯基不等式的两边。”
同学们纷纷拿起笔开始计算。
过了一会儿,一位同学站起来回答:“先生,左边(∑|a?+b?|3)13=((1+4)3+(2+5)3+(3+6)3)13=(216+343+729)13=3。右边(∑|a?|3)13+(∑|b?|3)13=(13+23+33)13+(43+53+63)13=3613+21613。经计算,3≤3613+21613,满足文可夫斯基不等式。”
戴浩文先生赞许地点点头:“非常正确。那大家再想想,文可夫斯基不等式在实际生活中有哪些应用呢?”
同学们开始积极地思考和讨论。
一位同学说:“先生,在物流运输中,可以用文可夫斯基不等式来计算货物的总重量和体积,以便合理安排运输车辆。”
另一位同学说:“在建筑设计中,可以用文可夫斯基不等式来计算建筑物的结构强度和稳定性。”
戴浩文先生对同学们的回答表示满意:“大家的想法都很不错。文可夫斯基不等式在实际生活中的应用非常广泛,只要我们善于观察和思考,就能发现它的更多用途。”
戴浩文先生接着说:“除了我们昨天介绍的应用,文可夫斯基不等式还有一些其他的重要性质。例如,当p=2时,文可夫斯基不等式就变成了我们熟悉的柯西-施瓦茨不等式。柯西-施瓦茨不等式在数学分析、线性代数等领域有着广泛的应用。”
同学们对文可夫斯基不等式和柯西-施瓦茨不等式的关系产生了兴趣。
戴浩文先生继续讲解:“柯西-施瓦茨不等式可以表示为:(∑a?b?)2≤∑a?2∑b?2。它是文可夫斯基不等式在p=2时的特殊情况。通过柯西-施瓦茨不等式,我们可以得到很多有用的结论,比如向量的内积和模长之间的关系。”
同学们认真地听着,努力理解柯西-施瓦茨不等式的含义。
戴浩文先生又举了一个例子:“假设有两个向量a=(1,2)和b=(3,4),根据柯西-施瓦茨不等式,有(1×3+2×4)2≤(12+22)×(32+42),即112≤5×25,这是成立的。”
同学们对柯西-施瓦茨不等式有了更直观的认识。
戴浩文先生说道:“同学们,柯西-施瓦茨不等式是文可夫斯基不等式的一个重要特例,它在数学中的地位非常重要。希望大家在课后能够深入研究柯西-施瓦茨不等式,进一步理解文可夫斯基不等式的性质。”
接下来,戴浩文先生又给同学们讲了一些关于文可夫斯基不等式的拓展内容,如加权文可夫斯基不等式、多维文可夫斯基不等式等。
同学们听得津津有味,对文可夫斯基不等式的认识不断加深。
在接下来的日子里,戴浩文先生通过各种方式,不断强化同学们对文可夫斯基不等式的理解。他组织同学们进行小组讨论,让大家分享自己对文可夫斯基不等式的理解和应用;他还鼓励同学们在课后查阅相关资料,深入研究文可夫斯基不等式的更多性质。
同学们在戴浩文先生的引导下,逐渐掌握了文可夫斯基不等式的知识,并且能够灵活地运用它来解决各种数学问题。
有一天,一位同学在课后找到戴浩文先生,说道:“先生,我发现文可夫斯基不等式真的很神奇,它可以帮助我们解决很多以前觉得很难的问题。”
戴浩文先生欣慰地说:“看到你能有这样的体会,老师很高兴。文可夫斯基不等式是数学中的一个重要工具,只要大家善于运用,就能在学习中取得更大的进步。”
随着时间的推移,同学们对文可夫斯基不等式的掌握越来越熟练,他们在数学学习中也变得更加自信和积极。
在一次数学竞赛中,同学们充分运用文可夫斯基不等式的知识,解决了许多难题,取得了优异的成绩。
戴浩文先生在总结竞赛时说道:“同学们,这次竞赛的成功离不开大家对文可夫斯基不等式的掌握和运用。希望大家能继续努力,不断探索更多的数学知识,为自己的未来打下坚实的基础。”
同学们纷纷表示一定会牢记老师的教导,在数学学习的道路上不断前进。
在未来的日子里,同学们带着对文可夫斯基不等式的深刻理解,继续探索数学的奥秘,创造出属于自己的精彩人生。
喜欢文曲在古请大家收藏:()文曲在古
轻声诱哄,傅总的小娇妻被宠上天 娱乐边缘人 欢迎加入六班 嫡女凤华:绝色痞妃太撩人 草根魂穿之系统挖坑逼我崛起 宠妾灭妻?侯门主母她改嫁权臣 影后穿剧,在线发疯,天天杀男主 高武:这个武神,有亿点点欠揍! 腰软妾室,勾他上位 偷听灵植心声,凡女飞升了! 穿越八零:绿茶娇妻被糙汉掐腰宠 喂养流放崽崽后,她成古人白月光 快穿:男配快到怀里来 死遁后,我成了疯批暴君的白月光 穿越后,我在前排看真千金打脸 误带道具诊断书,合约妻子哭惨了 穿书!系统要我攻略禁欲师姐 海都风云之林风传奇 猪肉西施她,干活比杀猪还丝滑! 圣女万万岁
网络作家,兼职二流编剧,并最终混成了三流导演的王泽穿越了。 他发现,这是一个文气照耀千古的世界。 读书人文气加身后,诗可杀敌,词能灭军,文章可安天下。 而且,诗词文章,受到的人气加持越大,威力也就越大。 一些顶级的诗词文章,在受到万民的民意加持下,甚至能做到以诗封神的程度。 王泽激动了。 要说到聚拢人气,诗词文章,怎么可能与小说相比呢? 特别是,小说,还可以拍成电视或电影...
兼职赚钱却被车撞,林天本以为自己悲催的人生走到了尾声谁知道不仅没死,还获得了透视能力和逆天医术这下爽了!...
他背景神秘,却遭厄运成赘婿,又被逼离婚。可刚签完字,各方大佬齐来恭迎,千名保镖雨中高呼尘爷好!...
天洵三界,风云际变。异魔所过之处,有生灵涂炭,有血流成河,亦有长剑高歌!千城所行之路,有人心难测,有枯骨成山,亦有风雨鸿渊!宁千城自凡尘中来,求神问道,持苍梧之剑,历生死轮回,平万千坎坷,终一朝成神,仗剑天下!...
她,三年前坠崖失忆。三年后入宫为奴,却意外发现自己早就破了身子。被皇子睡,又惨遭遗弃,她成为后宫中的笑柄,有银子就能睡的破鞋。几位皇子却偏偏对她情有独钟。而她,也渐渐解开身份的疑团。原来,她曾如此尊贵,手中攥着皇室妃嫔才有的印鉴,到底谁才是她的夫君?而谁又是设计她坠落悬崖之人?喜欢玲珑的小伙伴进群285857255...
...