手机浏览器扫描二维码访问
哈哈哈!
这样想的话,确实是好受多了!
程诺心头那被魏院长算计的阴霾一扫而空。
他活动活动手指,揉了揉之前一直维持微笑导致有些发僵的脸蛋,低下头,开始浏览起魏院长的论文。
聚精会神的他,一点点将论文中的内容嚼碎。
就连前面四位老师和答辩毕业生交流,他都没有察觉。
虽然魏院长的此篇论文和程诺的毕业论文选择的证题相同,但具体的证明步骤却是千差万别。
程诺和上世纪伟大的数学家切尔雪夫在证明bertrand假设时,都是采用引理代入推导的方法。
但在魏院长的这篇论文中,他却另辟蹊径,采取了一种截然不同的证明思路。
euler乘积公式引入法!
程诺暂且用这么名字命名。
在论文中,魏院长从证明过程的一开始,就引入euler乘积公式这个概念,随后通过euler乘积公式和bertrand假设的数学逻辑关系,进行命题推导。
何谓euler乘积公式?
这是数学家日耳曼提出的关于复数分布的起点之一,具体内容为:对任意复数s,若re(s)>1,则:Σnn-s=Πp(1-p-s)-1。
这是一个相当冷门的数学公式,在现在数学学术研究中几乎很难用到。
没想到,魏院长会突发奇想,用它作为证明bertrand假设的另一切入点,果然不愧为曾经的华国数学界的大牛。只不过,结果似乎并不完美。
用了十多分钟的时间,程诺看完了整篇论文。
当然,这指的不是程诺读完了文件那完整34页的内容。
和程诺提交的毕业论文一样,真正算是真材实料的,只有那五六页的内容罢了。
读完之后,程诺对魏院长的证明思路也算是了解。
首先,他设f(n)为满足f(n1)f(n2)=f(n1n2),且Σnf(n)∞的函数(n1、n2均为自然数),则可顺利推导出:Σnf(n)=Πp[1+f(p)+f(p2)+f(p3)+]。
得出上面那一串的推导定理后,算是完成了证明的第一步。
下面,由于Σnf(n)∞,因此1+f(p)+f(p2)+f(p3)+绝对收敛。考虑连乘积中pn的部分(有限乘积)………利用f(n)的乘积性质可得:Πpn[1+f(p)+f(p2)+f(p3)+]=Σ'f(n)。
第三步,由于1+f(p)+f(p2)+f(p3)+=1+f(p)+f(p)2+f(p)3+=[1-f(p)]-1……
第四步,……
…………
最后一步,由(2n)!(n!n!)=Πp≤2n3ps(p)。将连乘分解为p≤√2n及√2np≤2n3两部分……由此,得证bertrand假设成立。
一步接一步,逻辑严密。
穿越之仁义无双 TFBOYS之吸血鬼 Kimi归来 绝品村医 傲孤 神雕之吾乃毒王 灵魂花店 源世界之天狼墟叶南 网游之传奇巅峰 我在东瀛有座道观 我的末世领地 英雄联盟之永远的瓦罗兰 都市之最强狂兵 绝色倾城,医妃倾世 全能透视 帝妃倾城,妖娆大小姐 本港风情画TXT 穿越之圣镯奇缘 快穿之炮灰不爱吃盒饭 时光是你,余生也是你
五年前,陆知淮一纸离婚协议书,带走了她拼尽全力生下来的女儿,只留下一句别让我再看见你。五年后,洛锦衣作为f国知名配音大咖,带着腹黑大宝,暖男二宝,呆萌三宝霸气归来,某男才后知后觉。洛锦衣追女儿,陆知淮追儿子,陆可可道这对cp,磕了!洛锦衣斗绿茶,陆知淮治绿箭,洛执道后悔了吧,晚了!剩下俩宝拍手看热闹,某霸道陆总临危不惧,知难而上...
传闻不学无术的池大小姐,在撞柱醒来后,忽然变得通情达理了。不但琴棋书画,样样皆精,而且诗书礼仪,处处出众。...
警花一朝穿成山村丑丫头,姥姥不疼舅舅不爱,那个帅哥,从今天起你就是我师父了,哎哎哎!你别跑!...
江潮这个悲催玩意儿,玩个游戏都能把自己玩到座荒岛上去!别人飞天遁地,江潮却连个丹田都没有!他要如何在这没有任何道理可讲的荒岛上,从其他999个修真者的手中保住性命?书友交流群368989417...
foreverthereshallbecoldunderthesun烈日虽在,终有酷寒)riverwillrundryandtheforestswither(河溪湍急,终将干涸草木青葱,终为枯朽)thestarsshallgrowdimflickeranddie(辰星闪耀,终归黯淡)anddeathshallreignfromforevertoforever(唯有死亡,永恒永恒!)我们将从我们的坟墓中爬出来,向生者的世界进军。每一个死去的凡人都将会增加我们的数目,直到仅有一个黑暗的世界存在。只有到那时候,世界才会了解在不死的和平中所运行的永恒的秩序。书友群152716641...
明朝好丈夫由作者上山打老虎额创作全本作品该小说情节跌宕起伏扣人心弦是一本难得的情节与文笔俱佳的好书919言情小说免费提供明朝好丈夫全文无弹窗的纯文字在线阅读。...